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ABSTRACT 

DeJipite the fact that a large amount of work has been devoted to 

undei standing the nature of the electronic structure in the transition 

metals^  very little precise knowledge of the magnetic electrons in the 

ferromagnetic metals is available.    By using the neutron as a probe,  pre- 

cise information can be obtained about the spatial distribution of the 

■\agnetic moment density in a ferromagnet that is quite free of theoretical 

approximations.    Neutron magnetic scattering amplitudes are generally 

quite small,  especially at large scattering angles,  and polarized neutron 

beams must be employed if accurate measurtments are to be made.    Pro- 

fessor C.  G.  Shull of M. I. T.  has dev jloped the polarized neutron beam 

technique to such an extent that extremely small magnetic scattering am- 

plitudes can be measured with high precision.    Professor Shull and his 

students have used the polarized beam technique to determine the mag- 

netic form factors of iron and cobalt. 

There are no accurate wavefunctions available for the magnetic 

electrons in a metal lattice* however,  free atom wavefunctions are generally 

available for most transition metals.    By comparison of the measured form 

factors with free atom form factors,  and by direct calculation of the mag- 

netic moment density from the measured neutron data, it was found that 

the magnetic moment distribution in iron and cobalt agreed with a model of 

the magnetization that imposed free atom-like distributions on a constant 

negative background.  It was also discovered   that the magnetic moment 

density was quite asymmetric about the nuclei in iron but almost spherical 

in cobalt.    It was apparent that it would be valuable to know distribution 

of the magnetic moment density in nickel so that it could be compared with 

that of iron  and cobalt.    We thus decided to measure the magnetic form 
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factor of nickel.    The measurements were performed at the M.I. T.   reactor 

using one of Professor Shuil's polarized beam spectrometers. 

The magnetic scattering amplitude of nickel is smaller than that 

of either iron or cobalt and a large amount of neutron counting time was 

necessary to measure the desired number of reflections.    It was also neces- 

sary to apply corrections to the neutron data.    The data had to be corrected 

for incomplete polarization of the neutron ^eam and for the half v^.der at h 

contamination of the beam.    The polarization cf the beim, -was close to 100^ 

and the half-wavelength contamination was very small,  otherwise these 

corrections could not be made with any certainty.    Secondary extinction had 

to be minimized and the data corrected for any remaining secondary ex- 

tinction that could not be eliminated     The data also had to be corrected for 

any multiple scattering effects that might be present.    The magnetic   scat- 

tering amplitude for nickel was determined for the first 27 Bragg reflec- 

tions,  corresponding to a   —r—    value of 1.16. 

The measured form factor for nickel was compared to free ion form 

factors that were available.    It was discovered that the measured form fac- 

tor agreed extremely well with an unrestricted Hartree Fock free ion form 

factor for Ni    provided a uniform negative contribution was included in mag- 

netization.    The measured form factor is not a smooth function of —r— 

showing that the magnetic moment distribution in nickel is vjry asymmetric 

about the nucleus.    From the comparison of the measured and free ion form 

factors it was determined that 81 + I/o of the 3d m?gnetic electrons occupy 

orbitals with t?    symmetry compared to the ^ü^ required for spherical 

symmetry.    Shuil's data show that Aljo of the 3d electrons occupy t 
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orbitale in iron.    Thus,  the magnetic moment density is spread out along 

the [ill] direction in nickel and the [100] direction ir iron relative to the 

other crystallographic directions. 

The magnetic form factor was Fourier transformed to give a 

three-dimensional map of the magnetic moment density directly from the 

measured data.    The map shows clearly the asymmetry in the magnetic 

moment distribution.    The Fourier series from which the density map was 

obtained converges too slowly to give information about   the moment den- 

sity in the region far from the nickel nuclei.    A Fourier series was de- 

rived that gives the magnetic moment density averaged in space over a 

cubic block.    This series,giving the average density,converges very rapidly 

and it is found from it ihat the magnetic moment density goes negative in 

the rd^ion between the atoms.    This is in agreement with the comparison 

between the free ion and measured form factors which requires that a uni- 

form negative contribution be included in the magnetization.    The size of 

the negative contribution agrees very closely in the two cases and the 

analysis of the data is consistent with a model of the magnetization which 

assigns tAe magnetic moment of nickel in the following way: 3d spin+O. 656 H-cj 

3d orbit +11.055 H- j    uniform negative contribution -0.105 jJ.. . 
I P P 

Tne neutron data give no information about the origin of the nega- 

tive contribution.    One possibility is that the 4s electron spins in the metal 

might be oppositely polarized to the 3d electron spins.    4s electron form 

factors fall to a very small value before the first Bragg reflection so the 4s 

electrons cannot   be seen directly by the neutrons.    Another possibility is 

that   spin polarization effects in the 3d band may give an effective negative 
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contribution in the region between the atoms.    In this case all the scattering 

would take place from the 3d band.    Since a negative contribution to the mag- 

netization is found in iron,  cobalt,  and nickel,  it seems that the origin of 

the negative contribution must be intimately connected with the interaction 

that makes these materials ferromagnetic. 
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THE MAGNETIC SCATTERING 

OF NEUTRONS BY NICKEL 

by 

Herbert A.  Mook 

Division of Engineering and Applied Physics 

Harvard University,   Cambridge,  Massachusetts 

I. REVIEW OF THEOI Y AND EXPERIMENT 

A.    Introduction 

When a neutron is scattered by a magnetic atom there are two main inter- 

actions that take place.    There is a nuclear force interaction between the neutron 

and the nucleus of the scattering atom.    For neutrons of thermal energy the 

neutron wavelength is very large compared to the nucleus and only the S partial 

wave is significant in the scattering interaction.    This means nuclear scattering 

is independent of scattering angle.    If the atom has any unpaired electrons there 

will also be an interaction between rhe magnetic moment of the neutron and the 

magnetic moment of the unpaired electrons.    The thermal neutron wavelength is 

of the same order as the radial extent of the atomic electrons and one finds that 

the magnetic interaction between the atomic and neutron moments is strongly de- 

pendent on the scattering angle. 

This  reportdiscusses the measurement of the angular distribution of mag- 

netic scattering in nickel metal.    The magnetic scattering in nickel is very small 

in intensity,  and . le measurements were made by observing the interference term 

between the magnetic and nuclear scattering.    We will see later how this can be 
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done by using polarized neutron beams.    The angular distribufion of the magr.stic 

scattering is simply related to the spatial distribution of the periodic magnetic 

moment density in the scattering material.    Sufficiently accurate measurements 

have been made that the magnetic moment density in nickel can be well determined 

in three dimensions. 

In the iron series transition metals most of the magnetic moment density 

results from the 3d electronic shell.    Despite the fact that a great deal of effort 

has been spent to gain an understanding of the behavior of the 3d electrons in the 

transition metals,  very little is known about their exact nature.    The neutron dif- 

fraction measurements give direct information about the 3d magnetic electrons 

that is quite free of theoretical approximations.    It is unusual in the study of 

transition metals that precise experimental measurements have such a direct and 

meaningful interpretation. 

The basic measurement of the magnetic scattering is fairly straightforward 

and is discussed in Chapter I.    There are several small but fairly involved cor- 

rections that need to be made to obtain the final data and these are discussed in 

Chapter II.    The results of the measurement and comparison with theory are dis- 

cussed in Chapter III.    If the reader is not concerned with the details of the ex- 

perimental methods he may omit Chapter II and concern himself only with the 

review sections of Chapter I and the final results of Chapter III. 

B.    Magnetic Scattering 

The theory of magnetic scattering was first developed by Schwinger [l]. 

The first comprehensive treatment of the scattering of polarized neutrons was 

developed by Halpern and Johnson [2] and their work has been extended by 

other authors to include orbital effects and higher-order terms [3-7],     "he 
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deviation of magnetic scattering presented here follows that given by Blume [5] 

and Marshall [7]. 

The cress section in the Born approximation for a process in which the 

scattering system goes from state q to state q' while the neutron is scattered 

from wave vector   k to   k' and spin state S to S' is given by 

d<r =   ^'(J^o <<is  I U^(K)  | q's'Xq's'  [ U (K) [ qs>  (1-1) 

qs-^q's' yZTT'h    / 

where K= k - k   and U (K) is the Fourier transform of the interaction between 

the neutron and the scatterer.    k' is given by the energy conservation cc   Jition 

fr 2k'Z     +E   . = A2      +E a-2) 
2^—     q   zzr      * 

o o 

To get the total cross section from (1-1) we must sum over the final states q's', 

and average over the initial states qs taking account of their different probabilities 

P    and P  .    Usually P    is given by the Boltzmann distribution 

-Eq/kT 

P    =e         (1-3) 
q     -      -E /kT 

e I 
q 

Performing the summation and averaging processes and including relationship (1-2) 

we obtain 2 

dfi'dE' ~ L    q s Z 
qs               q's' 

k(mo   \ 
k ( 2^2 / 

-0 o ni K, 
|2rri 

+ E'    -*2k2 

q      2m   " 
o 

k'( ^b    j     <qs   | UMK) | q's'Xq's'  | U(K)| qs> x 

(1-4) 

We would like to consider scattering of polarized neutron beams,  and, 

in general,  this cannot be done using a single wavefunction for the following reason. 

Choosing an arbitrary quantization axis,  which we wili call the   z   axis,  the most 

general wavefunction describing the spin of a   neutron is 
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i// = aa + bß (1-5) 

where a is the wavefunction representing spin up and ß is the wavefunctior   rep- 

resenting spin down.    If the wavefunction is normalizedja and b obey the equa- 

tion 

|a |2   + (b }2   =1 (1-6) 

The expectation values of the x,  y,  and z spin components are given by 

S   =1/2 [a b+b a] 

Sy =i/z i [ab -a b] (1-7) 

Sz-l/Z[ |a (2- |b \Z] 

If we set b equal to zero, S   and S   would be zero and S   would be 1/2.  The ^ '     x y z ' 

spin would then be completely polarized along the z axis.    If a is zero,the spin 

is completely polarized along the -z axis.    Other choices   of a and b will give 

intermediate   values of S    but must also cive non-zero values for S    or S z 0 x y 

or both.   So for all other choices the spin is polarized along some direction 

other than   the z axis, however,   since from (1-7) 

y 
Sx + S   + Sz '   = 1/4 [ I a r + | b r ] =1/4 (1-8) 

the spin must be completely polarized along some direction.    Thus,  no mat- 

ter what choice is made for a and b,  (1-5) always describes a spin completely 

polarized in one direction.    We see then that in order to describe    partially 

polarized or unpolarized beams we cannot use one wavefunction but must use 

an average over many wave functions.    We could then treat the scattering of 

polarized beams in the following manner.    Using (1-4) we could calculate cross 

sections for scattering out of initial state (1-5), treating a and b as arbitrary. 

Thv: average over     e initial wavefunctions could then be performed by aver- 
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aging the result over the magnitudes and relative phases of a and b.    In fact, 

this turns out to be a very difficult process and it is much easier to do the 

calculation by introducing the concept of a density matrix. 

We wish to find a shorthand way of describing the wavefunction (1-5) 

by specifying the values of a and b.    This can be done by defining the density 

matrix 

(1-9) 

Notice that 

trP   = aa* + bb* = 1 (1-10) 

Also,  we can show by comparison with (1-7) that 

S   =tr[<r P] x        L  x  J 

Sy = tr [(TyP] (1-11) 

?z = tr WzP] 

where (r , cr and <r are the Pauli spin operators. All the initial wavefunctions 

can be averaged over by simply averaging over the elements of (1-9) to give the 

density matrix for the whole beam 

(1-12) 

Then (1-11) is still correct if S^ is reinterpreted ab the expectation value of 

Sa averaged over the whole neutron beam.    Because P is a two-by-two matrix, 

it can he expressed as a linear combination of the four linearly independent 

two-       two matrices which are the unit matrix and the three Pauli spin matri- 

ces. 

„.;....     r-AT     ffifid 
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P   -g + Pjr    +Pcr    +P(r 

/   R + 

xx y  y z   z 

g + l/2Pz lAiP-iPy) 

l/2(Px+iPy) g-1/2 Pz        i <1-13) 

g,  P  ,  P  ,  and P    are constants and have to be determined.    We can find e ="     x'     y z e 

immediately since by (1 -10) trp = 2g = 1. 

The other constants can be found using (1~11). 

SZ = tr(<r P)=g tr <r    + P    tr tr   cr    + P    tr <r„or    + P tr o" (1-14) ^z'0 zx zxy ZyZZ x' 
2        . 

Now trtr ,  tro- cr ,  tro* or   are all zero and tr cr      = 1/2.   Thus (1-14) becomes z'        z x'        z  y z ' v        ' 

SZ = ]/2Pz (1-lb) 

P    is therefore the z component of the polarization.   Similar equations hold for 

the other components^  thus,  the vector P defined by the components P  ,  P  , 
x       y 

P,   denotes the polarization of the beam.    (1-13) then becomes 

p  =1/2 T +PS (1-16) 

Now let us go back and consider our formula for the cross section (1-4).    We 

want to concentrate on the neutron spin,  so let us suppose the sums over q1 and 

q have been done giving 

do- 2        ~    \" V i -   T i 

dIHE       ~   Z    Ps  2'     <S ' 0     ' ^ ^  ' 0   ' S> (1"17) 

s s' 

where "Ö is a suitably defined operator.    The sum over S' can be done immedi- 

ately giving 

amg-   Ä^     PS<S|5
I
ö|S> (i-i8) 

s 

The above expressions for the cross section are only useful when there is no 

phase correction between the states with quantum number S\  i.e.,  the densi- 



1-7 

ty matrix is diagonal with respect to the states S.    In this case,  the proba 

bility P    is just the diagonal element <Sip[S> and (1-18)  can be written 

A y +_ 
jjgg-   «    ^    v,  i O    0| SXS | P| s> 

S 

If P   is diagonal ^  | P  [ S>0     , = < S  | p| S> so (1-19) can be written s s 

d2. 
dIEE y     <S I 5     O ! S'XS'  |  P (S> 

ss 

and this can be summed immediately over S* giving 

7 T" _T_  1 
dor        A:    ;       <S|0    OP(S> = tr(0 0TP) 

(1-19) 

(1-20) 

(1-21) 

The last form is independent of the representation used to label the states 6 

and thus in this last form it does not matter whether or not P   is diagonal;    A 

formula that is more general than (1-4) and includes the effects of neutron 

polarization can therefore be written in the following way 

2 

dfi'dE1 

x 6 

m 
\   _ 

L Pq   \\ 2  I       tr    [<C1 I U'  W   I  q'X^'   I U (K)  | qr PJ 
qq1 

2 2     2 ' 
-h (k1   -k  ) + E 
— q 

2m 

(1-22) 

where the trace is to be taken only with respect to the neutron spin coordinates. 

The interaction between the neutron and the scattering system is usual- 

ly broken up into an interaction with the nuclei of the scatter U    and a mag- 

netic interaction U     with the spin and orbital moments of the electrons.   U m r n 

and U     have been given by Halpern and Johnson [2] and are 

- ^-  ,. 
   £J 
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U     K) =      >    e J   a     = 2 /r -ft 
. ni m 

—. J o 

o mc . 
i 

= 47!_j^vei     -^.^ (1.23) 

m mc o 

where n + d. is the positic n of the scattering nucleus,  n   giving the position of 

the unit cell and d .   the position vector of the nucleus within the unit cell,   r., 

S.,   p. and m are,  respectively,  the position,  spin, momentum,  and mass of 

thj i th electron.    S is the neutron spin,   Y = 1. 191 is the neutron gyromagnctic 

ratio and a_   is the neutron scattering length.    To find the cross section we 
nj 

must substitute (1-23) in (1-22) and perform the required traces.    It is helpful 

to remember that 

SaV 1/4   * »ß + 1/2   ' ß «PVS d-") 

where Q" ß V run over x y z and C     ä, is zero unless a,  ß and V are all different, 

plus unity if äßvare in cyclic order and minus unity if aßv are not in cyclic 

order.    Using (1-24) it is easy to show 

tr T = 2        tr  S   S« = 1/2     Ö    . 
or    ß        ' aß 

tr S    =0      tr S S_S   = l/4 iß     Q^ (1-25) 
a a ß  Y aßV v ' 

Substituting (1-23) in (1-22) and using '1 -25) we obtain 
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dg        . k^  Y 
d^'dE'        k     /.Pq 

qq' 

q|T+ Iq'Xq' I T|q>+ i^—j  < q j T^ | q'X q' | P ' C5| q > + 

^<qiP-^|q,><q'|T|q>+   (-2eJ-)  < q | Q+| q-> ■ <q. | S | 
mc 

q> + 
mc 

i V^-z)   p' (<q|Q+lq,> x   <q'iQ|q> 
mc 

6     f*_ {k'2-k2) + E   ,-E   )    . 
\2m0 q      q/ 

In deriving (1-26) we have used the relation 

(1-26) 

for the components of the vector product of two vectors   Ä   and   S. 

It is generally assumed that the electron distribution responds so 

quickly to the motion of the nuclei that the Debye-Waller temperature fac- 

tors for nuclear and magnetic scattering are the same.    We will see later 

that this assumption is well supported by experimental evidence.    The quan- 

tity measured in the nickel-scattering experiments is the ratio of the mag- 

netic to the nuclear scattering.    In this case,  the Deb^e-Waller  temperature 

factors will cancel in the final result and we might as well drop them at 

this time.    We can thus assume that the nuclei are rigidly fixed and ignore 

lattice vibrations.    We are only interested in elastic scattering,   so we can 

take    jq'> =  |q>.    It is much easier at this point to assume the orbital moment 

is quenched.    This is very nearly true in nickel although when the magnetic 

form factor is compared with theoretical calculations we will want to include 

the orbital term.    For convenience we will drop the orbital contribution at 

this time and quote the result complete with orbital term when we need it. 

»•-^   I  -  ^-. 
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1 3i   7 the above simplifications we can take over Halpern and Johnson's [2] 

resu.. 

<q|Q|q>=)    e' K"(n + ^) f_(K) <qlKx vi_   xK)   I q> (l-Z"7) 
_ nj nj 

S_     is the spin operator for the ion at the site  (n, j)  while f_    (K) is the 
nj nj 

Fourier transfoim of that ion's dpin density and is called the form factor for 

that ^on.    Since the Curie point of nickel is 631    [8] we can assume thar on]y 

the ground state of the spin system is appreciably occupied so that 

<qjS_   |q> = S_   r)_ (1-28) 
nJ nj     nj 

where S_    is Ahe magnitude of the spin and r}_    is a unit vector in the direc- 
nj nj 

tion of the spin. 

Since natural nickel is made up of t-iree isotopes with different scatter- 

ing amplitudes^we must average our scattering expre?"   ms over the isotope 

distribution found in natural nickel.    Let 

<a> = ^   Caao (1-29) 

a 

where C    is the concentration of the ath isotope and a    is   the scattering 

length for this isotope.    Assuming the isotopes are randomly distributed 

<a_   ><a_ > = <a. ><a.> =  | <a> f    for n / n'   j / j' 
nj        nj J        J 

= < | a.  j    >   for   n = n'   j = j' 

or<a_><a_    > =  l^^l 2 + ( <| a [ 2 > -   |<a >| 2) 6_ Ö, 
nj      n'j' J J J nn»        %1J U   JU^ 

Substituting (1-27) in (1-26) and usin6 '1-28) and (1-30) the elastic scat- 

tering cross section becomes 
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da 
"dT? 

IK- n 
!"N(K)i    +N/. 

j 

7  (<iaj2>-   |<a,>!2)    + 

7e 

rnc 

iR(R_ -!l_,..) 
nJ       n J      [ka.^l f_.(K)  S_.P •   q_.    + 

njn'j' 

i<a.>| (-...(K) S... P ■ q.,., ] + 1      J    '   n'j' nj' ^n'j' J 
7e 

mc 

v iK^R-.-R.,.,) 

njn'j' 

S-.S.,., f_.(K) f-.-.IK) (q.,.,  • q_. + iP •   (q,,.,    x   qm. ) ) 

where we have defined 

_ ^        _ /,v 

q_.   =   K   x (r7_. x K ) 
nJ nJ _   _ 

v  iK,d 
and let   R_. - n + d   .    In (1-31)   F-T(K) = )   e J 

nj j N /^ 

(1-31) 

<a.> is the nuclear 
J 

J 

(1-32) 

structure factor. 

In a ferromagnet like nickel we are able to simplify equation (1-31) 

greatly by lining up all the spins in the sample with a large magnetic field.    In 

this case,   all the spins would be along the vector   r}   so     q_.   would be independ- 

ent of   n   and   j .    We will see later that the experimental results are very easy 

to interpret if the magnetic field is applied perpendicular to the plate of scatter- 

m* "-t3^~r-j- « 
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ing defined by k and k'.    Taking then q _    to be independent of n and j,   the cross 
nj 

section reduces to 

i K".n   l        r 7 
do^H^    a'       ""I ||FN{K) |    +2Ye^    S FN(K) FM(K) P . ö i 

" n L mc 

2     , 2   "^ 
\xt\       S2  | FM(K) f (K)  |    q|+ N^ (|   <aj>

2| - | <aj>|
2) 

^mc   / J j 
(1-33) 

i K'd. 

where F-f{K) =  )    e is the magnetic structure factor for a ferromagnet. 

j 

Let us now consider the sum  )   e Thio sum contains N terms 

n 

where N is the number of lattice points in the crystal.    For most values of 

K these terms will have different phases both positive and negative,   so there will 

be a great deal of cancellation and the sum will be negligible. 

For certain values of K ,  however, all the terms will have zero phase 

and the sum will be N.    If we define a reciprocal lattice vector T   by 

e =1   for all n, (1"34) 

then whenever Kis equal to 2ir   times a reciprocal lattice vector T the sum is 

N,  and a? K moves slightly from Zflr the sum falls rapidly to zero.    After some 

consideration of the volume under this very narrow peak,  one finds 

_____   2 

j)    eiK'n|    = N(2 TT )3    )    6(K-27rr) (1-35) 
LJ V 4^ 
n o T 

where V    is the unit cell volume.    This expression shows that the first set of o 

terms in equation (1-33) will only make a contribution when K is equal to 277 

times a reciprocal lattice vector or that the scattering will all  fall in certain 
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Bragg poaks.     These terms then give the coherent Bragg scattering      The 

scattering resulting from the last term of equation (1-33) is found uniformly 

everywhere and is called the diffuse scattering.    When the conditions are 

such that Bragg coherent scattering may take place,  one finds that the co- 

herent scattering is much larger than the diffuse scattering and that the 

diffuse scattering only comes in as a small correction to the coherent scat- 

tering. 

For a face-centered cube, 

iK'd- 27Ti (hx. + ky. + Iz. )       r    ,      .     .      .      .      , 
_ j j j J 10 for ",  k,  I mixed 

Z /_, ] 4 for h,  k,  I All odd or 
j j L All even       (1-36) 

Thas we have for the coherent scatiaring 

,3 
If   <a> T' + j <a> i_ ^r = 4^ni r, <a>!^i<a>j2^ s^p^ + 

mc 
2 21       -2rW] Ve" S f (K)q^ (1-37) 

mc j 
2 — 

One usually calls Ye        Sf (K) the magnetic scattering amplitude and denotes it 
2 

mc 

by p.    p is a function of scattering angle through the form factor f(K) which 

is 1 when K=   T   and falls off from 1 when (K ) differs from zero.     | <a> | is 

called the nuclear scattering amplitude and is usually denoted by the letter b. 

b is independent of the scattering angle.    Thus,  finally,  we may write for the 

coherent cross section: 

do-     _   4N(2ff)3 (b2 + 2 pb P» q   + p  q2) (1-38) 
dlT     "        V o 

This expression gives the cross section for the scattering of a polarized neu- 

tron beam by a magnetic material with no orbital moment,  completely saturated 

=—ea^«^R.    ^^jsm Sr 
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in a high magnetic field.    This is very nearly the case for nicKel under the ex- 

perimental conditions used and frequent use will be made of expression (1-38). 

C.    MAGNETIC FORM FACTORS 

As mentioned in the introduction, the angular distribution of the magnetic 

scattering is related directly to the distribution of magnetic moment density 

of the scattering a'om.    The angular distribution of the magnetic scattering is 

given by the form factor and we define the form factor as the Fourier transform 

of the spatial distribution of the magnetic moment density.    As we shall see in 

the next section,polarized neutron beams are needed for accurate form factor 

measurements.    The first accurate polarized beam magnetic form factor mea- 

surement    were made by Nathans,  Shull,  Shirane and Andresen [9] on iron and 

nickel.    Since then, a number of form factor measurements have been reported 

[10-14].    The most interesting of these to compare with nickel are the very com- 

plete measurements of Shull and Yamada [10] on iron, and Moon [11] on hexagonal 

cobalt.    In both iron and cobalt very good agreement was obtained between the 

measured values and free atom form factor?.    The form factors were unrestnet 

ed Hartree-Fock calculations that allowed electrons in the same atomic shell,- 

but having different spins, to have different radial distributions.    In both iron 

and cobalt this very good agreement was obtained by assuming the spin density 

was the sum of an aspherical 3d contribution and a negative constant.    We shall 

see later that this same assumption is employed in nickel to give good agree- 

ment with calculated results. 

The behavior of the magnetic electrons in the transition metals is a 

difficult problem [15,  16].    It is somewhat surprising that free atom form fac- 

tors should agree with the measured values for a metal so closely.    The rea- 
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son that free atom form factors are any good for a metal at al. g^ems to stem 

from the fact that t> 3 jd wavefunctions at the top of the ban 1 in the metal are not 

much different from the free atom wavefunctions [17,  18,  19].    The wavefunctions 

at the bottom of the 3d band are quite diffuse compared with free atom wave- 

functions,  and neutrons can be scattered by the difference in radial distributions 

of spin up and spin down electrons at the bottom of the band even without a net 

spin difference.    An unrestricted Hartree~Fock calculation by Freeman and 

Watson [20] shows, that there is a small but noticeable difference in the radial 

distribution for spin up and spin down electrons in the free atom.    This difference 

may be larger in a metal but it is expected that most of the scattering must come 

from the unpaired spins at the Fermi level near the top of the band where the 

free atom and metal 3d wavefunctions are in substantial agreement. 

The neutron magnetic form factor is dependent on the difference in the 

radial distribution of spin up and spin down electrons and is different front, a 

form factor derived from an/ single electron of either type [20].    The neutron 

form factor is expanded in relation to any of the 3d electron X-ray form fac- 

tors representative of the charge distribution.    For this reason,  we cannot use 

neutron form factor data to g^t an accurate picture of the 3d electron charge 

distribution,  which will be differentfrom the magnetic moment distribution of 

the atom. 

Shull and Yamada [10] found that, in iron the 3d electron spin distribu- 

tion was quite aspherical about the nucleus as the form factor at a given 

scattering angle and wavelength was dependent on the direction of scattering 

through the crystal.    Moon [11],  however,  found the spin distribution to be 

quite spherical in ) sxagonal cobalt.    In a cubic field the degenerate d orbitals 

split into triply degenerate t?    and doubly degenerate e    orbitals.    The t 
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orbitals are peakeJ along the cube body diagonal wmle the   e     orbitals are 

peaked along the cube edges.    Shull and Yamada found that in iron 47 /o 

of the magnetic electrons had   t^      symmetry and 53 /o   had   e     symmetry 

rather than the 60 /o and 40/o   required for spherical symmetry.    The data 

of Nathans et al.  [9] for the magnetic scattering in nickel did not go far 

enough out in angle to determine the asymmetry of the magnetic electron 

distribution.    One of the objectives of this study of nickel was to see how the 

asymmetry in the magnetic electron distribution compares with that of r on 

and hexagonal cobalt. 

D.    EXPERIMENTAL METHODS 

The quantity that we wish to measure is the magnetic scattering ampli- 

tude   p   because the form factor is determined from the angular dependence of 

p .    If a polarized neutron beam is not available,  one can consider the following 

experiment.    Apply a strong magnetic field perpendicular to the scattering 

vector   IT   so that   q   becomes a unit vector in the direction of the magnetic 

field.    From expression (1-38) the cross section becomes proportional to 

2     2 -    - b +p    since the   P    q   term will average to zero for an unpolarized be?"n.    One 

then applies a strong magnetic field along the vector   K making   q=0   and the 
2 

cross section will be proportional to   b   .    Assume the sample crystal introduces 

no corrections into the data.    Then if we bring a beam of monochromatic 

neutrons onto the sample crystal,  the ratio of the scattered intensities in the 

two cases for a coherent Bragg peak will be equal to the ratio of the cross 

sections or 

R   *   ^if- (1-39) 
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At   the first Bragg p^akjp for nickel is about . i^ x 10        cm and 1. 03 x 1^        c m 

is the accepted value for b   [211. R then becomes 

R = (1.03)2 + (AZ)2        -1.013 

(1.03)2 

This gives only about a 1, 50/o effect for the first Bragg peak in nickel and it 

would be difficult to determine the magnetic scattering amplitude for many re- 

flections in the above manner.    Since,  in fact,  this is the best experiment that 

can be done with unpolarized neutrons,  polarized neutron beams must be em- 

ployed to iiiake the experiment feasible. 

Polarized neutrons can be produced by using a monochromating crystal 

with equal nuclear and magnetic scattering amplitudes at the monochromating 

reflection used.    If there is an upward magnetic field on the monochromating 

crystal the cross section for neutrons of spin up will be proportional to 

2 2 
(b + p)    = (2b/     under the above conditions,while the cross section for «"pin 

down neutrons will be (b-p)    = 0.    The monochromater-polarizer used in the 

nickel measurements was a disorder alloy crystal of Co      Fe        placed in 
.92     '08 

a magnetic field of about 3000 oersteds.    The(200)reflection of this crystal 

was used for which b is very nearly equal to p and the r olarization was very 

close to 100% . 

The general experimental arrangement is similar to that used by 

Nathans et al.[9].    A diagram of the M. I. T. S-4 polarized beam spectrometer 

is shown in Fig.  1.    A guide field of about 150oe.   parallel to the direction of 

the neutron polarization is maintained along the path between   the polarizing 

crystal and the sample crystal.    The sample is positioned in a magnet pro- 

ducing a field of abnat 7200oe.in the same direction as the guide fields and the 

i litiai neutron polarization direction.    A solenoid is placed in the path between 
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the polarizing crystal and the sample so that the polarized neutron beam can 

pttss alon^ its axis.     The solenoid can be energized witn R, F.  current that ^ roducesr 

an R. F.  Held perpendicular to the constant guide field.    When the R.   F. 

frequency of the solenoid is set to match the energy level separation of the two 

spin states in the guide held,  transitions are induced between the two spin states. 

If the current in the R. F.   solenoid is then adjusted to match the neutron transit 

tim;: in the solenoid the neutront passing through the solenoid are flipped over 

from spin up to spin down with a probability very close to one.    Thus, by energizing 

the solenoid, neutrons polarixed downward are brought onto the sample. 

The experiment can then be done in the following manner.    The sample 

crystal is positioned at a Bragg peak and the scattering from the sample of spin 

up neutrons is counted for an interval of time, usually about ten minutes in prac- 
2 

tice.   The cross section for spin up neutrons is proportional to (b+p)  ,    The 

R. F.   solenoid,  usually called the flipper, is then turned on and the scattering of 

spin down neutrons is counted for an equal interval of time.    The cross section 
2 

for spin down neutrons is proportional to (b-p)  .    Assuming that the sample 

crystal is ideal and that the beam polarization is perfect, the ratio of the intensity 

of the spin up neutrons scattered to the spin down neutrons scattered is givsn by 

R = (b+p)2     . (1-40) 

(b-p)2 

Putting in numbers again for the first Bragg rexiection we get 

R = (1.03 + -IZ)2        = 1. 597 

(1.03 - .12)2 

and this is nearly a 60 /o intensity effect.    The experiment then consists of 

measuring R,and   p   is obtained from equation (1-40).    R   can be measured 

accuratelv for a large number of reflections and in each case the magnetic 

SB 
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scattering ai.ipluude is given by (1-40) since   b   is a constam independent; of angle, 

For the actual experiment there are two separate counting channels.    One 

of these systems,  called the monitor channel,  receives pulses xrom a low effi- 

ciency counter mounted directly in the beam incident on the sample crystal.    The 

main counting channel counts for a  preset number of monitor channel counts 

and prints the result by means of a digital recorder.    By this arrangement small 

changes in the incident beam flux are cancelled out to fiist order.    The flipper 

is turned on automatically in alternate countin   periods.    Scattering data for 

both spin up and spin down neutrons   can thus be automatically collected as long 

as necessary to gain the desired counting statistics.    Standard BF, proportional 

counters are used in both channels and standard commercial amplifiers and 

sealers are used in the counting circuits. 
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II. CORRECTIONS TO THE EXPERIMENTAL DATA 

A.    Instrumental Corrections 

In the ideal case where no corrections to the experimental data are ueces- 

g ratio is given by 

^ o   d^ / \     2 

sary,  the flipping ratio is given by 

I /... \ 
K- "      ^p-b     j (2-1) 

I ^ ° d\dl// 

where the integration is to be taken over all wavelengths X. and directions xj/ oi the 

beam I    incident upon the crystal,    g      and g      are the ideal reflectivities of the 

sample crystal for spin up and spin down neutrons.    For the ideal case considered 

above,  the effects of incident beam divergence and wavelength spread cancel in 

the flipping ratio and R becomes proportional to the ratio of the cross sections for 

spin up and spin dow»: r.v'.rons given in (1-38). 

Unfortunatelv, the ideal case is seldom realized in practice and   there 

a.-e corrections to the data that need to be made particularly for the first few re- 

flections.    The corrections to be considered in this section are characteristic of 

the particular spectrometer used for the experiment.    Instrumental corrections 

must be made for imperfect beam polarization from the monochromating crystal, 

depolarization effects along the neutron path,  imperfect spin flipping by the flip- 

per,  and half wavelength contributions in the beam.    The polarization ol the S-4 

spectrometer is close to 100 /0 and the half wavelength contamination is small) 

otherwise,  these corrections could not be considered with any certainty.    The 

derivation for thf» polarization corrections that follow is similai to that developed 

in previous work in the neutron diffraction laboratory and discussed, for instance, 

by Phillips [13]. 

r.-i 
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In the actual experiment,  the crystal is quite small and we can assume 

that the beam is uniform in intensity over the crystal and that the distribution of 

\ and ip is the same in the beams polarized with spin up and spin down.    Let P0 

be the beam polarization just as the beam enters the sample crystal.    Any mag- 

netic field components not parallel to the neutron polarization direction will 

serve to depolarize the beam; thur>, as we shall see later,  in some cases,  the 

neutron polarization in the sample can be smaller than the incident polarization 

P  .    Let the beam polarization in the sample crystal be given by P where P is 

defined by 

p-   jllX_ I+tf = I (2-2) 

i+ + r 

where T    and I   are the intensities of spin up and spin down neutrons in the sample 

crystal.    One can then write 

I-1' -: 1/2(1 + P) 

l" = 1/2 {1 " P) (2-3) 

If the efficiency of the flipper is given by f, the beam, emerging from the flipper 

is characterized by 

if
+ = (i-f)v+fi0" 

If-.fIo
+Ml-f)Io-      . (2-4) 

I,   and I,   are the intensities of spin up and spin down neutrons after passing 

through the flipper and I       ana I       are the corresponding initial intensities. 

The polarization of the beam emerging from the flipper is defined by 

+ 
l£    " If Pf-   X i„ (2-5) 

If   +If 

The measured polarisation ratio using the flipper is then given by 

1 
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I [l+(\\p)Z*{\\p) + l'{\\l/)g^{\\j/)]d\d\l/ 
Rm   =   _. . . (2-6) 

f       j [ifW) g*(H') + If"(^) gr' (Xtf/)] dX di// 

The monochromating crystal which is positioned to scatter neutrons 

with wavelength   \   at the (ZOO) reflection will also scatter neutrons with wave- 

length   \/Z   by meant» of the (400) reflection.    The value of   \   in chosen to be 

close- to the peak of the Maxwell distribution of neutron wavelengths incident 

on the monochromating crystal.    The half wavelength intensity is then quite 

far down on the Maxwell distribution curve so that 

-T^ « 1 (2-7) 
\ 

Then making use of the fact that 

Pf=Po(l-2f) (2-8) 

and including half wavelength terms,  the measured flipping ratio is given by 

(i+P)g' + (i.P)g-+-^-[(i+Px/2)g+
x/2 + (i.px/2)g;/2] 

R       =   i  

[.i+(l-2f)P]g++[l-(l-2f)P]g-+-^-[l+(l-2f^/2)Px/2]g+
x/2 + 

+ 
where   g     and   g     are the acual crystal reflectivity functions for spin up and 

spin down neutrons averaged over the crystal volume.    In the above equation the 

integration over the wavelength spread and beam divergence is not explicitly 

written.    This integration must be carried out by using the crystal reflectivity 
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function,  which we will consider in the next section,  and using the above- 

mentioned assumptions regarding the equality of the beam distribution over the 

crystal for spin up and spin down incident neutron intei sities.    Since any cor- 

rections to the data are very small,   this procedure is well justified for finding 

polarization correction expressions. 

The polarization is quite high and the fKpping efficiency is near 100 /o , 

so   P   is only slightly smaller than 1 and (i-2f)P is slightly more positive than 

-1.    We can,  therefore,   expand Eq.   (2-9) about small deviations   |   and    rj 

in the beam polarization.    Let 

P = 1 -  ? 
(2-10) 

(l-2f) P = -1 +  r) 

and substitute (2-10) into (2-9) giving 

+    _/,.+        -v        X./2 g  -?/2(g    - g  ) + -p- 

g" + n/2(g+-g")+-j^gx/2 

R__   = jJL  (2.11) 

+ where we have assumed   g.   /? = g,  /_ = g.  /_ in the half wavelength term.    This 

is certainly valid in the case of nickel considering that the half wavelength term 
l\/Z is very small.    Since   r)   and   —**■—     are small w° can expand the denominator 

\ 
of Eq.   (2-11) giving to first order 

\ 

R   = 4 - 5/2 a~^&l- n/z 4    fi-rfi--] + -V^--^ I1" ^ 1    (2"12) 
m   g" g' g"   \ s~    j       x    g'    \    g" / 

+ 
Let   R - o—  which is the measured flipping ratio when   P =  1 and f = 100 /o 

g' 
but crystal extinction may be present.    Then 
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Vz h/z 
R     = R        -?/2 (R    ,   -1) -   ri/Z R    (    (R    .   -1) + I, " (1-R     .   ) m        ext. ext. "        ext.   v   ext.     '        \        g x       ext. 

(2-13) 

Since the correction terms are small,   R      does not differ much from R     ,    and 
m ext. 

we can write 
/ SSL    / 

R    f=R     +I/2(R    -1) + n/2 R    (R    -1) +-r^-       -^^-(R    "I)       (2-14) ext.        m       '     x   m    '       "        mv   m    '     I. -       v   m 
^ g 

or using (2 -10) r "^ 

Rext. = R
m + («m"1»    j'/2 f1-12' + ^ [ (1-20 P«] Rm f ^  ^ 

(2-15) 

The determination of P,  f and I   /, are discussed in Appendix A.    Once these are 

knov/n,   (2-15) may be used to correct the flipping ratio for incompletp polarization 

and half wavelength effects.    The flipping ratio    R still includes extinction 

effects,  however,  so we will consider extinction correctiona in the next section. 

B.   Extinction 

In the last section we have dealt with the corrections made necessary 

by the properties of the polarized beam spectrometer itself.    In this section, 

we will consider the problem of primary and secondary extinction which depends 

on the properties of the sample crystal.    For neutron scattering,   secondary ex- 

tinction is much more important than primary extinction so we will deal with 

it f:r3L. 

1.    Secondary Extinction 

Secondary extinction was first treated theoretically bv Darwin [22] and 

later applied particularly to neutron scattering by Bacon and Lowde [23] and 
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Moon [11].     The treatment here will follow that given by Bacon and Moon 

We make- the assumption,   first proposed by Darwin,   that the sample crystal 

consists of a large number of small perfect crystal blocks,   called mosaic blocKs, 

that are tipped slightly in angle relative to one another.    In this case,   Bragg 

reflection occurs in each block and the total intensity is obtained by summing 

up the intensities from each block.    Secondary extinction results from the re- 

duction in beam strength seen by those blocks deep in the sample relative to 

those blocks near the surface where the neutron beam enters.    Simultaneous 

differential equations can be set up for the transmitted and reflected beams in 

each block and solved to get the total reflected intensity.    If there were no ex- 

tinction,  the reflectivity would be given by 

t        C      t g<r= j Q w {v ^ ^ (2-i6) 

+      X3N2F2 + 
where   Q    =  «      and   W (öfl - 4) is a function normalized to i which giv<is 

»in    9a " 
ß 3 

the angular distribution of mosaic blocks.    N   is the number of unit cells per cm  , 
+ 

F    = 4 {b + p)   is the structure factor,  ö_    is the Bragg angle and   t   is the average 

pt-?th length in the crystal. 

All the experiments were performed by symmetric transmission of a 

crystal of uniform thickness.    For this case,  the secondary extinction problem 

can be solved exactly and the reflectivity function is given by [23] 

_2g 
g   =    1/2 (1-e       0) e'Mt (2-17) 

where   g   is the crystal reflectivity with exr;action and where ß is the linear 

absorption coefficient.    This gives for the measured flipping ratio 

-2go
+ 

Rext.  '   '''.J- I2"18' 
1-e 

_1 
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In order to evaluate (2-16) some assumptions nust be made to make the integral 

tractable.     Assume the neutron path length t is constant over the crystal, 

which amounts to neglecting edge effects,  and assume W {^a'ty ) 1S Gaussian 

so that the mosaic block distribution is given by 

-(0p-(h2 

-    e    =;  
1 

p        /B n 2)7 (2-19) 

The integral in (2-16) over dö will depend on the angular and wavelength diver- 

gence of the incident beam as well as the mosaic block spread.    Some assumption 

must thus be made as to the relative importance of the mosaic distribution and 

the beam spread in angle and wavelength in producing broadening of the Bragg 

peak.    Q is much morf, slowly varying in \ than the beam distribution and can be 

taken outside the integral in (2-16). 

If we assume that the broade    ag resulting from the mosaic distribution 

of the crystal is much smaller than that from beam divergence effects,  the integral 

in (2-16) becomes 

+oo 

(   W(Ö6-<j>)d<j.    =   -^—     ] 
[dp -9)2/2n 

J TTif T7 
•00 

d(0  .^ = _L_ 
p       2/ir n 

(2-20) 
then 

1- exp 
■Q*t Q+t 

'ext. 
JjLJl 

1-exp' Q t 

\pr~ x\ 
i- U t 

2 /F" r\ (2-21) 

assuming that 
2 y/F"r) 

we are interested. 

Q     t < < 1 which is always true in the cases in which 

K» m * 
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If we assume that the broadening due to the beam divergence is much 

smaller than that caused by the mosaic spread but larger than that of a perfect 

mosaic block, we immediately obtain,   using (2-16),   (2-18),  and (2-19), 

(2-22) ext. 
Q" 

i - Q t 

The actual case is somewhere between the results given by (2-21) and 

(2-22).    In the crystals used for the reflections where extinction is largest,  the 

broadening due to the mosaic width was larger than the bioadening due to beam 

spread,   so we will adopt equation (2-22).    We will see lat^r in this section that 
+ 

an absolute value of the term multiplying   Q       is not generally needed 10 make the 

extinction correction,   so the actual form taken is not important.    Thus,  making 

use of the fact that 

R      /l+p/b   ]Z   _    Q+ 

and using (2-22) we obtain 

R    ,     =   R ext. 
,. _Q!L_ „ .   >_, 

'27r    rj 

Then 

AR         R"Rext. Q+t 
IT  =   -"ll  

ext. 

4p/b 

v/2?    r?     d+p/b)' 

and 

^ - J~ ^ fcS) s/zHf  rj 

(2-23) 

(2-24) 

(2-25) 

(2-26) 
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where Ap/b is the error introduced by neglecting extinction entirely.    The 

data can   then be corrected for secondary extinction by the expression 

/R-    -1 
p/b   =       _fxt-       +AP/b   . (2-27) 

^R     . + 1 ext. 

In order to make the extinction correction,  Q t       must be known. 

v/2?   rj 

This term will be used often,so let us denote it by the letter   A.    The   extinc - 

tion   correction is always small, so the measured value of the magnetic scatter- 

ing amplitude can be us^d in finding Q  .    Some knowledge of the Debye-Waller 

factor is also needed to find Q  f  but this knowledge can be very approximate 

as the correction is not particularly sensitive to the Debye-Waller factor.    The 

Debye-Waller factor was calculated by vising a characteristic temperature of 

400 K given by James [24] for nickel.    Everything is then known in the term   A 

except for the factor r] which is a measure of the angular distribution of the mo- 

saic blocks in the sample.    In theory,   r) is simply related to the width at half 

maximum of the sample rocking curve taken with a sharp monochromating crys- 

tal in such a geometry that the rocking curve width is minimized.    The relation 

is rj   = _£_      where P   is the rocking curve width at half maximum.    It is found 
2. 36 

in practice that the  rocking curves show a very irregular mosaic distribution! 

and it is usually difficult,  if not impossible,  to get a value of ^7 that is satis- 

factory for the entire crystal sample.    The beam size can be reduced so as to 

look at only a small portion of the sample,  and in this case,  the rocking curve 

becomes more regular as only a small part of the total mosaic distribution is 

examined.    Even in this case, however,  the parameter rj deduced from the 

rocking curve must be treated as quite unreliable.    Rocking curves for the 
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A-2-1 sample are shown in Fig.   2, 

A better approach to finding the correction term A for various crystals 

is to minimize the extinction in one case to such an extent that R - R for a ext. 

given reflection,  preferably the first reflection.    Once the correct value of 

R is obtained for a given sample,  the A value of other sample crystals can be 

found using the relationship 

A = ext. 
R-l " (2-28) 

The extinction can be made small by decreasing the crystal thickness. 

For thelllljreflectionjerystal slices as thin as 0. 0038 cm.  were used for long 

counting periods in an effort to find R.     Measurements from a set of crystal 

slices of va -ious thicknesses can be used to get the correct value of R by 

extrapolating tr, zero sample thickness.    The preparation   and cutting of the 

crystals is discussed in Appendix B. 

If the flipping ratio is measured at different wavelengths for a   given 

crystal,  R can be eliminated between two equations like (2-23) and the value of 

A   for the crystal can be obtained.    Measurements were made on several crys- 
o o 

tals for the (ill) reflection at wavelengths of 1. 05 A^ and 0. 77 A .    The crystals 

can also be examined at different reflections and values of A obtained through 

the angular dependence of the extinction correction.    By a series of intercom- 

parisons,  a reliable value of the extinction correction factor A can be found for 

each sample crystal.    In some cases, the sample rocking curves were uniform 

enough to give a reasonable estimate of the parameter rj.    The values of A 

determined from these values of   r) were in good agreement with the values of 

A determined using (2-23).    In no case,  however> was any reliance placed on 

the value of A determined from a crystal slice rocking curve.    A table of the 



(IM) PcAK IN SywMEIRIC 

TRANSMISSION FOR A-2-1 

SAMPLE WITH X'!.20A 

FROM (220) PLANES OF 

SILICON MONOCHROMATER 

BEAM INCIDENT ON 

ENTIRE SAMPLE 

V DIAMETER .:\M 

INCIDENT ON CENTER 

OF SAMPLE 

CRYSTAL 9 IN DEGREES 

FIG. 2    TYPICAL CRYSTAL ROCKING CURVES 

-mmß1*^^ 



■£-   . I 

BLANK PAGE 

I 
l 

i 

mm 



11-11 

A   values of some of ehe sample crystal slices   is given below for   A. = 1 . 05 A , 

TABLE   I 

Secondary Extinction Correction 

T actors for Various Samples 

Sample Thickness 
Sample Reflection  in Cm. 

A- ■L- -1 
A- -3- -1 
A- ■4 

A- -2- -2 
B- -3- -b 

(111) 0.056 0.314 + .008 
(111) 0.021 0.077 + . 007 
(111) 0. 010 0.0 56 + .006 
(HI) 0.00 38 0.000 + .008 
(200) 0.023 0. 171 + .007 

2.    Primary Extinction 

Primary extinction results from the reduction in neutron intensity seen 

by those atoms at the bottom of a mosaic block relative to those at the top of 

the block where the neutron beam enters.    There are several expressions 

available for correcting for primary extinction in the X-ray case.    The well- 

known Darwin Theory for primary extinction can be carried over to the neutron 

case by replacing Zachariasen's [25] factor   A     for X-rays by 

\t F:LN 

p cos tt, 
P 

where   t     is the thickness of a riosaic sheet.    In this case,   the flipping ratio is 

given by 

A_ +2 J —i(2A-") 
R::Rpri.  n^o  (2_30) 

ext. oo 

p     l_j    2n+l       p 
n-o  
oo 

A    - )   J, X1(2A  +) p     /_,    2n+l       p 
n=o 
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where   J     is a EcEael function of order n.    Since   A       is small,   the Bessel n p ' 

function can be expanded in the usual manner giving 

. r     x\ 
R = RP_^-    li + 1/12  1 

[ cos   6 

v 
ext. (F     - F"   ) 

P 
(2-31) 

The Darwin formulation is derived for a thin plate of infinite lateral ex- 

tent.    It would seem more reasonable to consider a formulation for a small per- 

fect spherical crystalline,  and correction expressions taking this print of view 

are available from Ekstein [26].    Using the Ekstein formulation,  one obtains in 

a similar   manner 

'L 2 
R = Rpri-  [1 + 7/16 N2X2t  2(F+   - F"  )] . (2-32) 

For secondary extinction,  the correction to the flipping ratio can be 

vri'ten using (2-22) 
~ 1        -.3 

,2 2 
R = R sec. 

ext. 1 + 
X3T N2 

o (r F     ) (2-33) 
v/ZF  sin Z6a   cos 6a 

T     being the sample thickness.    We see that tha expressions for cor- 

recting for primary and secondary extinction are very similar.    Unfortivnately, 

there ''S no way to measure accurately the thickness   t     of a mosaic block,  so 

we have no idea ae to the exact size of the primary extinction correction.    For 

any reasonable estimate of the thickness of a mosaic block,  however,  the 

correction term is very small. 

Combii'ing both primary and secondary extinction corrections and keeping 

only first-order terms,   the flipping ratio becomes 



R= R ext. L 
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7 2 2 K T 

7/16 t      + , 
0 v^sin2^   cosöj/J   (2-34) 

Notice that the primary extinction term containing t    has a different dependence on 

Ö      than the secondary 3xtinction term containing T We can thus hope to be able 

to sort out the relative importance of the correction terms by considering reflec- 

tions ?.% different Bragg angles.    Equation (2-34) can be rewritten as 

R 
R 

-1 

ext. 

Sin2r  cosöß        _^     2   2    2 2 

-j-ß- = 7/16 X N t        6i.n2Ö     cos Ö   + 

2   ? 
\  N  T 

ftiT T\ 
=   I (2-35) 

R,  and thus F     ,   can be obtained by using ^ very thin bent crystal slice which would 

have small primary and secondary extinction.    The correction formula can then 

be tried out on a thick crystal slice which has large secondary extinction and 

presumably larger primary extinction than a thin bent slice.    If we compute   ? 

and examine its angular dependence we can decide which correction terms are 

important.    If all the extinction in the thick slice is secondary    extinction C should 

be independent of the Bragg angle.    If there is appreciable primary extinction,  C 

should be some function of the Bragg angle.    ? is plotted in Fig.   3 as a function 

of the Bragg angle for the A- 2-1 slice which is . 022 inch thick and has 25/o 

secondary extinction at the(l 11 Reflection.    We see that ? is independent of angle 

within the experimental error.    Unfortunately,  in the Ekstein case the difference 

in angular dependence of the primary and secondary extinction correction terms 

is small.    We can probably say from Fig.   3,  however,  that primary extinction 

in the A-2-1 slice does not cause more than a l^ error in the flipping ratio. 

'- 

■-■-§§£*■'■, 
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This gives a sufficiently small error in p/b that the error caused by primary ex- 

tinction can be neglec^jd in comparison with othe^ ^..-inmental errors.    There- 

fore,  in all cases we have assumed that any contributions troir primary extinc- 

tion to the data are negligible and have only corrected lor secondary extinction 

effects. 

C.    MuUiple Reflections 

In finding the magnetic scattering amplitude by the flipping ratio measure- 

ment,  it is assumed that   ehe neutron scatters just once from the planes corre- 

sponding to the Bragg peak >»eing measrred.    There are ceitäin orientations'Of 

the sample crystal that permit reflections,  in addition to the Bragg reflection, 

that one wishes to observe,    Moon and Shull [27] have shown that these simul- 

taneous reflections have a large effect on the neutron intensity diffracted by 

single crystals.    The effec; of simultaneous reflections will tend to cancel some- 

what in the flipping ratio;  nevertheless,  the effects are still large enough that 

they must be correctly taken into account particularly for the first few reflec- 

tions.    For this reason,  all the data were taken while the sample was rotated 

slowly around the scattering vector K.  Any abrupt changes in the Bragg re- 

flected intensity as the sample is rotated about K are an indication of multiple 

reflections and the data in that region were disregarded.    Multiple reflections 

usually are more prominent when there is appreciable secondary extinction, 

and little multiple scattering was observed in the thin crystal slices used for 

most of the measurements.    Figure 4 shows data taken for the thick A-2-1 

slice and the thin A-4 slice as they were rotated about K  for theC222)reflection. 

The sizeable intensity changes with rotational angle for the A-2-1 slice are the 

result of multiple reflections.    The effect is particularly noticeable when the 
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rotational angle is zero and the crystal slice is perpendicular to the neutron 

beam.    The A-4 crystal slice intensities show no "nultiple scattering effects. 

D.    Sample Depolarization 

We have so far assumed that the sample is magnetically saturated per- 

pendicular to the plane of scattering defined by th". incoming and outgoing neutron 

beam.    The flipping ratio of the (220) reflection was looked at as a function of 

the applied magnetic field.    Figure   5 shows that R did not vary with field in the 

region of   > 7000 oe.  used throughout the experiment,  and it can be assumed 

that the sample waa completely saturated in this region.    A very sensitive check 

on the extent of saturation of the sample crystal can be made by examining tlie 

beam depolarization caused by the crystal [28].    This can be accomplished by 

using two Co  «2 Fe  nR polarizing crystals and examining the change in the flip- 

ping ratio when the sample is placed between them,  but still in the 7000 oe.  field. 

The experimental arrangement is shown in Fig.  6.    The beam depolarization was 

measured for each sample and found to be very small in each case verifying that 

the sample was very close to complete saturation. 

So far,  it has been assumed that the sample crystal slice was straight up 

and down in the magnetic field.    The data, however,  were taken with the sample 

being rotated around the vector K in order to correct for multiple reflections. 

The neutron spin processes about the direction of the total magnetic field 

given by 

B= H+ (477 - N) M (2-36) 

where N is a demagnetizing factor.    Because of   the (47r - N) M    term,  the di- 

rection of B  in a tilted sample will be different from the incident neutron polariza- 

tion direction,  and this v/ill cause depolarization of the neutron beam in the sample. 

—---'---H-F™ ^3^   ■     ^~ * -        — - _-r^-   ^^ 
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Halpern and Holstein [28] have shown that this problem can be treated classically, 

and Moon [11] has treated the case where M    is not along H in the sample crystal 

due to magnetic anisotropy but with the sample slice straignt up and down in the 

applied magnetic field.    Moon's treatment also assumed the sample slice was 

many neutron Larmor precessions long. 

The neuron polarization direction is always along B ,  and the magnitude 

of the polarize inside the sample is given by 

P = P    Jos y (2-37) 
o 

where V is the angle between B inside the sample and B  outside the sample.    This 

is the so-called sudden approximation and in our case amounts to assuming that 

the fields at the sample edge change rapidly over a .Larmor precession length. 

An attempt was made to measure the depolarization of a crystal slice tilted in a 

magnetic field using the same arrangement as Fig.  6 but including a provision 

for changing the tilting or azimuthai angle of the slice.    It is found that the neutron 

precession time in fields that we are concerned with is such that the neutron makes 

only a few precessions in traversing the sample crystal slice.    The neutron polari- 

zation on leaving the slice will then depend on the extent to which an integral num- 

ber of precessions is completed in the slice.    If the neutron spin makes an integral 

number of precessions in the sample^  it rotates back to its original direction on 

leaving the slice and no depolarization is observed. If,  on the»other hand, the neutron 

makes a half integral   number of precessions, the polarization on leaving the sam- 

ple is less than the polarization inside the sample and is given by 

P = P     cos2V (2-?^ o 

Intermediate cases can also be calculated and the general case is given in 

Appendix C.    The observed depolarization of the tilted crystal slice depends on its 

tilting ang'e,  its thickness,  its shape (through its demagnetizing factors) and its 

3m. 
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saturation magnetization.    Figure 7 shows the result of a depolarization experi- 

ment for the sample A-4 which is slightly over a Larmor precession length thick. 

The theoretical curve comes from the deviation in Appendix C.    From the results, 

it is found that if the tilting angle is limited to 10 , negligible error is introduced 

in the measured values of p/b.    If larger tipping angles are desired,  depolariza- 

tion corrections could be applied using the methods of Chapter II,  Section A. 

E.    Temperature Dependent Effects 

All measurements were made at room temperature.    In this case,  a 

thermal average of the ratio of magnetic to nuclear scattering is being measured. 

This can be written 
2 2 

+[  W  (K  ) - W  (K  ) ] 
< p/b >    = p/b < M > e n e (2-39) 1 z 

where < M    > is the time average of the z component of the unit magnetic moment z 

vector.    The exponential term consists of the difference between the Debye-Waller 

factors for nuclear scattering and magnetic electron scattering.    As mentioned in 

Chapter I,  Section B,  it is assumed that the nuclei and their electrons move together 

in such a way that their Debye-Waller factors are the same and the exponent in (2-34) 

vanishes.    The only temperature effect would then be the variation of < M    >   with 

temperature, and this would be proportional to the variation in the saturation mag- 

netization per unit mass with temperature.    Following Bozorth [29], the magneti- 

zation at room temperature for nickel is taken to be . 946 of that at zero degrees 

Kelvin. 

There have been se  eral temperature dependent flipping ratio measurements 

made and no evidence has been found that p/b is strongly temperature dependent 

except for the expected change in magnetization.    Pickart and Nathans [12] checked 
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several reflections in Fe-Al at 77 K ^nd found no variation in p/b from that at 

room temperature outside of the change in magnetization.    Shull [10] measured 

two iron reflections particiilaHy sdneitive to the e0to U "tStio and found no 
g        ^g 

temperature dependence in the asymmetry of the spir distribution in the tem- 

perature region between 78   and 830 K.    Moon [11] examined three cobalt re- 

flections   at 78 K and found no temperature dependence in p/b except for the 

magnetization change.    Menzinger and Paoletti   [30] have found a  small tem- 

perature dependence in p/b in f. c.c.  cobalt at 873 i?   that cannot be explained 

by the change in magnetization.    This may stem from a temperature dependence 

in the magnetic form factor or a difference in the Debye-Waller factors for 

nuclear and magnetic scattering at high temperatures. 

Considering the above results, it would seem reasonable to assume that 

p/b   in nickel is only temperature dependent through its magnetization through 

most of the temperature range from 0 K   to the Curie tempterature.    The tem- 

perature dependence of p/b may not follow the magnetization in the temperature 

range near the Curie point, but Shull's results on iron suggest that the asymmetry 

in the magnetic moment distribution is probably temperature independent. 

Saenz [31] has shown that the inelastic scattering of neutrons by spin 

waves peaks rather sharply around the Bragg reflections in a ferromagnet.    If 

this scattering is of substantial intensity,  it could cause an error in the background 

correction to the flipping ratio.    For the magnetic field geometry employed,  the 

cross section for spin wave scattering is minimized and is polarization independ- 

ent.    The effect of spin wave inelastic scattering was assumed negligible at room 

temperature and nc correction was made for it. 



III. DISCUSSION OF RESULTS 

A.    General Remarks 

The magnetic scattering amplitude was measured for the first 27 Bragg 

reflections.    About nine months of neutron counting time was required since 

the magnetic scattering is small in nickel.    A summary of the measured data is 

given in Appendr   D . 

There are two approaches that can be taken in analyzing the scattering 

data.    The firct is to compare the results with calculated values.    The compari- 

son has to be made with Hartree-Fock free atom calculations since no wave- 

function calculations are available for nickel atoms contained in a metal lattice. 

We will see that free atom calculations fit the data very closely if a constant negative 

term is added to the magnetization.    The second approach is to Fourier-transform 

the measured data to obtain the periodic magnetic moment distribution directly. 

This method does not require advance knowledge of the 3d wavefunctions and 

gives a three-dimensional map of the periodic magnetic moment density inde- 

pendent of any model of the magnetization. 

The magnetic scattering amplitude for the (000) reflection cannot be 

measured but can be calculated from the magnetizatio  .    If we take the magneti- 

zation of nickel to be 0. 606 HL   per atom    [32] at zero degrees K and the relative 

magnetization at room temperature to be 0. 946 of that at zero degrees K [29], 

the magnetic scattering amplitude for the (000) reflection at room temperature 

is given by 

Ve2     * *&> -12 
piOOO) = £—z      -f-     = 0.1545 x 10      cm. (3-1) 

mc 

■\Vneren_ is the room temperature number of Bohr magnetona per atom and 

V is the neutron gyromagnetic ratio. 

III-l 
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To find the magnetic scattering amplitude from the measured data 

we must know the nuclear scattering amplitude.    1. 03 J^ . 01 x 10      cm.  is 

the accepted value of the nuclear scattering amplitude in nickel [21].    Th; 

form factor is given by the magnetic scattering amplitude normalized to 

unity at (000) and is given in Table 2.    A I /o error in the normalization of 

the form factor has been included to take accoun', of the uncertainty in our 

knowledge of the nuclear scattering amplitude.    The form factor is con- 

sistently higher than that measured by Nathans et a*. [9]- This difference 

probably results from their improperly accounting for secondary extinction. 

All of the data of Nathans et al.were taken on a relatively thick 0. 022" 

crystal slice whose mosaic character was assumed to require no correction 

for secondary extinction. 

The periodic magnetic moment density is given by a superposition 

of the moment distributions centered at each lattice site i, 

p{T)=  >   p(r-T )=       p     T 

i              m31 
f dK e 

n,     —.         ■ 2 TT i T-r 

T 

(3-2) 

where T is a reciprocal lattice vector,  V the unit cell volume,  and p(r) is 

measured in Bohr magnetons per cubic  Angstrom.    We see that only the values 

of the form factor determined at the Bragg reflections are needed to obtain 

the periodic magnetic moment density.    However,   p (r),  cannot give us    any 

information about parts of the moment distribution that are not periodic.   For 

instance, a measurement of the magnetic scattering at the Bragg reflections 

cannot give any information about magnetic clusters.    Letting p (h k i ) be 

the magnetic scattering amplitude, equation. (3-2) can be written 
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TABLE II 

Comparison of Calculated and M easured Form Factcs 

h k  '' sin    ö/x    f(K) <Jo> <j4> orbit core f(K)cal a 

(111) L. 246 0. 791 + 0. 00l; 0.654 0. 014 0. 755 G. 005 0. 784 -0.002 

(200) 0.284 0.701 +0.008 0.578 0.020 0. 700 0.006 0.687 -0.014 

(220) 0.401 0.446 +0.005 0. 357 0, 045 0. 520 0.007 0.446 0.000 

(311) 0.472 0.320 +0.005 0.271 0.060 0.430 0.007 0.318 -0.002 

(222) 0.493 0. 310 +0.004 0.237 0.072 0.405 0.007 0.323 0.013 

(40C) 0. 569 0.156 +0.003 0.154 0. 075 0.325 0.005 0.157 0.001. 

(331) 0.618 0.168 +0.003 0.116 0.081 0.281 0.005 0. 170 0.002 

(420) 0.636 0.131 +0.003 0.105 0. 083 0.266 0.004 0.130 -0.001 

(422) 0.696 0.107 +0.004 0.066 0.088 0.220 0.002 0.105 -0.002 

(511) 0.739 0.036 +0.004 0.055 0.091 0.192 0.002 0. 043 0.007 

(333) 0. 739 0.109 +0.003 0.055 0.091 0.192 0.002 0. Ill 0.002 

(440) 0.804 0.058 +0.004 0.033 0.092 0.155 0.000 0. 063 0.005 

(531) 0.841 0.032 +0.004 0.022 0.091 0.138 0 000 0.039 0.007 

(600) 0.853 -0.. 025 +0.003 0.01^ 0.091 0.135 -0.001 -0.019 0.006 

(442) 0.853 0.052 +0. 004 0.019 0.091 0.135 -0.001 0.056 0.004 

(620) 0.899 -0.009 +0.004 0.004 0.089 0.117 -0.002 -0.014 -0.006 

(533) 0.932 0.036 +0.004 0. 000 0.089 0.105 -0.002 0.031 -0.005 

(622) 0.943 0.005 +0 004 0.000 0.088 0.103 -0.002 -0.002 -0.007 

(444) 0.984 0.037 +0.004 -0.006 0.087 0.090 -0.003 0.033 -0.004 

(551) 1.015 0.009 +0.004 -0.008 0.085 0.085 -0.003 0.009 0.000 

(711) 1.015 -0.047 +0.004 -0.008 0.085 0.085 -0.003 -0.044 0.003 

(640) 1.025 -0.001 +0.004 -0.011 0.084 0.080 -0.003 -0.004 -0.003 

(642) 1.063 +0. 001 +0.004 -0.013 0.082 0.070 -0.002 0.001 0. 000 

(713) 1.091 -0.026 +0.004 -0.017 0.081 0.065 -0.002 -0.027 -0.001 

(553) 1.091 0.012 +0.004 -r   017 0.081 0.065 -0,002 0.011 -0.001 

(800) 1.137 -0.063 +0.004 0.019 0.077 0.055 -0.002 -0.062 0.001 

(733) 1.164 -0.017 +0.004 -0.022 0.074 0.050 -0.002 -0.018 -0.001 

mmmvEm -^~   —.—-      —--—-— ——.TO^. B , „^ 
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(3-3) 

where the summation j extends over all the atoms of the unit cell and n is the 

number of atoms in the unit cell.    The sum over h ki is to be taken over a1! 

h k i both positive and negative but should not include the term (000).    The 

neutron measurements determine the magnetic scattering amplitudes p (h k|l) 

in magnitude and sign and thus give the shape ol O^v) in absolute terms, but 

say nothing about the normalization of P (    .    We can rewrite (3-2) as 

p(r) =p" + .p'(r) (3(-4) 

where Tp and p^r) correspond respectively to the first and higher terav 

equation (3-2).    If P '(r) integrated     'er r contains a d' ^ jrent magnetic moment 

than is obtained in the magnetization measurement,  the zero level determined 

byp   must be shifted so the integral of p(r) over r gives the c^rr^ct total 

moment.    Consider the case where we have two crystals in which p '(r) is the same 

but with different magnetization values.    The neutron diffraction measurements 

would give the same values for p(h k |) but the normalized form factors would 

have a different shape.    We thus see that the proper way to compare form factors 

is to lest their proportionality at all h k Rvalues other than (000)j  i. e., two 

form factors correspond to equal radial distributions whenf.(K) = C iy^h  K / 0. 

It is important to remember this when comparing measured form factors with 

calculated form factors. 

B.    Comparison of the Data with Calculated Results 

In the derivation for magnetic scattering in Chapter i,we assumed the 

orbital moment was quenched and included only the spin part of the form factor. 

This would be the case if 'g=2. 00 where g is the spectroscopic splitting factor 

The deviation of g from 2. 00 gives a measure of the orbital contribution to 

■■■■= —-i ■„-   ***tnm ^| ,-—^  - ^.-;.-,a,,-r-J^J. 
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the total magnetic moment.    Specifically, -w    is the fraction of the total mag- 

netic moment which is due to orbital motion.    For nickel,  g= 2. 20 as given 

by the magnetomechanical measurements of Scott [33]J   eo almost 10% 0^ the 

magnetic moment is due to orbital motion.    An orbital contribution must thus 

be included in our form factor  expression and the spin contribution reduced 

by 2/g. 

There is also some scattering from the core electrons inside the 

3d shell.    The core contains as many electrons with spin up as with spin down, 

but the radial distribution of spin up and spin down electrons is slightly different 

[20j      - *o exchange effects.    This difference in radial distributions results in 

a small amount of scattering from the core and we will include a core polariza- 

tion term in our form factor expression. 

The measured form factor f(K) may thus be written as tie sum of 

three contributions 

f(K)=-   f      .    (K)*^   f    ,_    (K)+f        (K) (3-5) ^    '      g      spin *   '      g       orbit corex   ' v       ' 

where f     .   (K) is a normalized spin density form factor,  f    ^(K) is a normal- 

ized orbital form factor,  and f (K) is a normalized core polarization form ' core   '   ' r 

factor. 

Since 3d free atom form factors are available,  we would like to com- 

pare our measured form factor with them.    As we have seen,     this is properly 

done by seeing if the free atom form factor can be scaled to agree with the 

measured form factor at all reflections other than (000).    We wish, however, 

to deal with normalized form factors and we vail assume the form factor 

can be written 

aamg: TEI  
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f (K) = (1+a) ,f3d(K) - a 6{K) (3-6) 

where a is a constant^  ab (K) makes a contribution at K— only,  and thus corre- 

sponds to a uniform contribution to the magnetization.    By using expression (3-6) 

we can compare the radial distribution of spin density in nickel metal with that 

in a free atom and still deal with normalized form factors. 

The measured form factor in nickel is not a smooth function of—r     • 

Notice,  for instance, that the (422) and  '600) reflections fail at the same value 

of —■.—       but have     very different scattering amplitudes.    This means that the 

spin density must be different along different directions in the crystal lattice. 

In a cubic field, the five-fold degenerate orbitals of the 3d electrons split 

into triply degenerate t      orbitals which transform like   xy,  xz, and yz,  and 

3      2 2       2 
doubly degenerate e    orbitals which transform like 3z     -r    and x    -y .    The 

neutron scattering amplitudes from these two sets of orbitals are different, 

and Weiss and Freeman [34] have shown that the spin form factor for 3d elec- 

trons in a cubic field can be written 

f3d(R) = <jo> + (5/2 Y'1) Ahk£ <j 4> (3"7 ) 

where <j > represents the spherical part of the spin distribution and <J4> 

the aspherical part,    yis the percentage of 3d electrons in e    orbitals and is 

equal to 40/^ for spherical symmetry. 

A ,,- is a function of the direction that is being ex?.mined in the crystal 

and is given by  > 

^ki =      ^^V")"1" ' <3-8' 
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The  <j > represent various moments of the radial spin density p'(r) and are 

given by 

<jn>= ^pir) Jn(Kr)dr (3-9) 

where J (Xr) is     spherical 3essel function of order n. 
n 

Blume [4] has derived an expression for the crbftal form factor, 

and using his notation it is given by 

f(K) = (g-Vz g2) + (5/2 y'l) Hkl{3/14 g4 ' 1/2 g2) (3"10) 

orbit 

where the first term gives the spherical contribution and the second term gives 

the   aspherical contribution.    One finds that (3/14 gt'lA 8?) ^B much smaller than 

<j > and we will leave it out of our form factor expressions.    Using equations 

(3-4), (3-6),  ^1670", arid (3-to) the form factor expression becomes 

f(K)- 2/g (1 +«) [ <Jo> + (5/2 Y-l) Ay^j^ ] + -^- [g0 - 1/2 g2] 

+ fcorte (K) + 2/g öö (K) (3-11) 

Hartree Fock calculations of  <j > have been performed by Freeman 

and Watson for nickel in various stages of ionization [20],  [35], [36]. 

<j_> is given for Ni,  Ni ,  Ni    and Ni     taking all the outev electrons to be o 
8      2 in the 3d shell, and for the free atom 3d    4s    configuration [35].    The <j >,s 

J. JL ML. 
for Ni, Ni ,  Ni    and Ni     are plotted in Fig.  8.    It is found that the <j >   for 

8    2 -fr the 3d 4s    configuration is very similar to that for Ni    so it is not plotted 

separately.     <j    > has also been calculated for Ni    using an unrestricted 

Hartree-Fock technique that allows wavefunctioms with differing spin quantum 

numbersm   to have different radial functions [20].    The form factor is ae- 
s 

termined from a density that involves the difference of the two radial func- 

»■ 
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tions for the two spin states and is slightly expanded relative to the form fac- 

tor given by the restricted Hartree-Fock calculation.    The <j > from an un- 

restricted Hartree-Fock calculation for Ni   in a cubic field arising from an 

octahedral array of point charges is also available [34}    The <j >,8 for the 

three Ni    calculations is shown in Fig.  9. 

Hartree-Fock free atom calculations for <j4> have been performed 

for Ni, Ni+, Ni 'H', and Ni* [35].    <j4> is plotted in Fig. 10 for each of the above 

cases.    The orbital contribution (g    'l/Zgy) was obtained from A.  J    Freeman 

[37].    It is similar to a spin form factor being only slighfly more expanded in 

r ■'   .    The orbital form factor is given in Table II. 

The data were compared with all these calculations and the best fit 

was obtained using the <j > from die u restricted Hartree-Fock calculation 

for Ni   , the <j4> for Ni    and setting  Y = 199o and a=0.19.    The comparison 

of the measured and calculated form factors is shown in Fig.  11. 

The agreement is extraordinarily good.  f(K)i8 very sensitive to the 

calculation chosen for <j > and it is easy to determine which calculation is best. 

The form factor is not very sensitive to the calculation taken for <j4> and either 

Ni  ,  Ni' ,  or Ni     will give a good fit with y^zl^yo .    <j > is not needed to find Y 

since  <i >  can be eliminated between two equations like (3-11) written for the 

same value   of   sin^    but for different values of h k I.    It is best to do this at 
\ 

sin ^ ft 
0 -1 —r— values ranging from 0. 8 to 1 A     where <j4> is large and fairly constant 

In practice, the best way to determine Y is to Courier-transform differences between 

calculated and measured results for various values of Y.    For the correct valae of 
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"Y the Fourier transform of the difference will have spherical sy;  metry.    In 

this manner,  it. was determined that 19 + 1% 0^ t^ie *& magnetic electrons are 

in the e    orbitals. 
g 

Figure 11 shows that the shape of the spin distribution in metallic 

nickel is almost identical to the shape of the free atom spin distribution.    We 

have obtained this agreement by scaling the 3d free ion form factor by 19 /0 

and thus in order to obtain the correct value for the magnetization   we must 

include a constant negative contribution to the spin density.    Since we cannot 

see the point K = 0 by neutron diffraction techniques,  none of our measurements 

is   of any assistance in determining the origin of the negative constant density. 

One possibility is that the negative constant represents 4s electrons oppositely 

polarized to the 3d electrons.    4s electron form factors fall to   immeasurably 

small values before the first Bragg reflection and thus can be represented by 

a delta function as in (3-10).    There would also be 3d,  4s cross terms in the 

form factor from the admixing of the 3ü,  4s wave functions.    It is difficult to 

determine the exact nature of this 3d,  4s cross term.    It is expected that it 

should be very small.    Certainly, the cross term would have a K dependence 

unlike either the 3d or the 4s form factor, and the good agreement between the 

measured and the free atom form factor would be ruined by such a term if it 

were at all sizable.    We are probably safe in assuming the cross term can be 

neglected in comparison with the other contributions to the form factor. 

In this case,  since the neutrons scatter from an unpaired spin density, 

either 3d or 4s,  (3-11) can be taken to represent a form factor which includes 

both 3d and 4s electrons.    The neutron data are thus in agreen>ent with a.jnodel 

of the spin density which distributes the net magnetic moment per atom at 0 K. 



m-io 

in the following way; 

3d Spin =■ + 0. 656 K, 
P 

4s Spin = - 0.105 ^ß 

3d Orbit = + 0. 055 Hfl 
P 

If the 48 spin density were spread uniformly throughout the unit cell,  it would 
o 3 

amount to a constant magnetization field of-. 0097 M-ft/A    or 1. 2 kg. 

It is also plausible that the parameter a represents scattering f:om parts 

of the 3d band that have wavefunctions very unlike free atom wavefunctions.    As 

mentioned in Chapter I, the wavefunctions at the top of the 3d band are very simi- 

lar to 3d   free atom wavefunctions,  and this is presumably why the 3d free atom 

form factor provides the good fit to the data shown in Fig.  10. 

Th> 3d wavefunctions at the bottom of the band are quite diffuse.    There 

is no net difference in the number of electrons with spin up and spin down at the 

bottom of the band.    However,  scattering can still tdke place from the bottom of 

the band if there is a difference in the radial distribution of spin up and spin down 

electrons.    Watson and Freeman's unrestricted Hartree-Fock calculation on Ni 

shows tiiat there is some variation in the radial wavefunctions for spin up and 

spir down electrons in the free atom.    Freeman [37] has suggested that,  in a metal, 

these spin polarization effects can act like an effective negative moment in the 

region far removed from the lattice sites and may be sufficient to account for the 

value of a.    In other words,  if the exact 3d wavefunctions including spin polariza- 

tion effects could be obtained for the metal,  a form factor calculated from these 

wavefunctions would fit the data without the necessity of scaling it.    Along these 

lines,  L.  Hodges,  N. D.  Lang,  and H.   Ehrenreich [38] appear to be having some 
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success in calculatmg a 3d form factor for nickel metal using a   pseudopotential 

method in a band calculation.    Although only preliminary results are available, 

it appears that it may not be necessary to include negative 4s electron polari- 

zation to obtain a fit between the measured form factor and the form factor 

derived from the band calculations. 
a) 

If one believes that all the scattering results from the 3d band,  the 

asymmetry function <j4> should be calculated from a p (r) that applies to the 

scaled 3d free atom form factor,  and not just the 3d free atom form factor it- 

self.    A function ^4-* which corresponds to the P(r) actually measured was sup- 

plied by R.  J.  Weiss [39] and is plotted in Fig.  12.    This function is not very dif- 
ji. 

ferent from the <J4> for Ni   , and since the form factor is not very sensitive 

to the exact shape of <j4> it is impossible to say if the Weiss <J4> gives a 

better *it to the data than the <)<> for the Ni    free ion.    Using the Weiss <j4>, 

the best fit is obtained with an e   population of 20% which is a very small 

change from the 19^0 required with the free ion calculation.    An e   population 
8 

of 19 + 19^> seems to be valid regardless of the origin of the constant. 

It is worthwhile noting that scaling the free atom 3d form factors 

also gives a very   good fit to the measured lorm factors in both iron and 

cobalt [10-11].    The value of  a is CIO for iron and 0.18 for cobalt.    It seems 

that any theory that ascribes the origin of a to the 3d band must also have to 

be valid in iron and cobalt. 

It is conceivable that expression (3-1) for p (000) is incorrect in a 

metal \nd that no scaling factor is actually nesded.    This seems very unlikely 

as there is no experimental evidence that (3-1) is incorrect.    The magnetic 

cross section expressions from which (3-1) is derived give the correct ex- 

'^SBäKUtt^^3^^'^'"^' 
i^-.^—  - z—^^^g^?-- ■   -^mmm    »j MWwwcqiaaMM» .:..— --—--  i-   1   .,- - ■«^^^^-^■■■nMn-n-MM^^„.M^,1,m, ..g.,.,,,, , j,,,,^,,,, 
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perimental results for the magnetic scattering in salts, and for paramagnetic 

scattering.  Moreover,  if the magnetic amplitude expression (3-1) were incor- 

rect,we   should expect to have found a common scaling factor a for the three 

cases, iron,  cobalt and nickel,  whereas these are not the same.    In any case, 

since the scaled free atom form factors fit the neutron diffraction data so 

extraordinarily well for iron,  cobalt, and nickel,  it seems that   free atom- 

like wavefunctions must play a very fundamental role in describing the periodic 

spin density in these metals. 

C.    Fourier Inversion 

In Section B we have seen that the measured data arenin good agreemttnt 

with a model of the magnetic moment density that superimposes free atom-like 

distributions on a constant negative ,)ackground.    By using equation (3-3), the 

Fourier summation can be performed to give the magnetic moment distribution 

directly from the measured data and the calculated point at (000).    It would be 

interesting   to see how the distribution given by the Fourier inversion compares 

with the model used in Section B. 

The three-dimensional summation was done en the M.I. T.  Computation 

Center 7094 computer using the MIFRI Fourier Summation Program [40].    Fig- 

ure 13 shows the magnetic moment density along the three main crystallographic 

directions.    As we expect,   since the 3d electrons in nickel have 81% t-,    sym- 

metry,  the magnetic mo.-nent density P(r) is spread out along the [HI] direction 

relative to the [1001 direction.    The density p1(r) falls to zero quite rapidly and the 

magnetic moment density over most of the unit cell is very small. 

The densityP (r) shown in Fig.  13 is really the true density as seen with 

finite resolution,   since data äro'Oh^ly avälilable ppitalthe (/7;3;3)ixe£l«Ctix3»n. at 
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—= 1.16 A   .    This is the optical equivalent of viewing an object through a 

111-13 

o-i 

\ 

finite-sized aperture.    The resolution function in Fig.  13 is obtained by 

Fourier-transforming a constant form factor for all reflections up to and in- 

cluding (733),  and letting the form factor be zero for all higher reflections. 

The resolution function shows the diffraction effects that would be produced in 

attempting to map a lattice of points using the same set of reflections used in 

the nickel measurements.    Any detail fmer than the .vidth at half maximum of 

the resolution function cannot be resolved.    We know,  for instance,  that the 

magnetic moment density from the 3d shell should be zero at the atomic site. 

The diffraction broadening effect of limited data smears out the moment density 

so that the decrease in the 3d moment near the atomic site is not observed. 

The limited resolution also causes the p(r) obtained from the Fourier 

scries to oscillate at large r.    We would like to be able to determine the  size 

of the moment density in the region between atoms, but the oscillations obscure 

the real value of 'p(r) which is smaller than the amplitude of the oscillations. 

The problem is that the F.-urier s< ries for P(r) converges too slowly to give 

us the information we arc asking for,  namely,  the moment density in the region 

between the atoms.    This problem has been solved by deriving the Fourier series 

that gives P (r) averaged in space over a small cubic block.    The Fourier series 

for the average p (r) is given by 

■mi 
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x+6    y+6    z+6 

x-6     y-6    z-6    hki 

n        1 Fubf 
= ._^_ -i        Y      £T~   sin (ZTT h 6/a) sin (27r k6/a) sin(27ri 6/a) 

v      (Zff   6/a)J    /       hKJl 

hkl 

-Zffi (h x/a + k y/a + i z/a) {3-12) 
X 6 

where F,. , is the magnetic structure factor, a the lattice constant, and 5/a is 

l/2   of the length of a side of the cubic block over   which the average is taken. 

This series converges much more rapidly than the series given in (3-2) because 

of the factor (hk4>)   .    The convergence of the two series for the point (1/2 00) 

is shown in Fig.  14 for 6/a = .075 .    Th« continued sum of the Fourier series 
_ •        Q 

is plotted versus   —r— ,so successive points are obtained by increasing the 

number of terms in the series by one,  except the average is shown when two 

reflections fall at the same sin 6   value.    The size of the oscillations   is    a 

measure of the convergence of the series. 

The iJ^r) determined   by {3-3) is still oscillating widely at sin 6   - 1.16, 
\ 

.__ o 3 
but the series for P(r)    has converged nicely to the value -0. 0085 M-fi/A  . 

Several different cube sizes (2 ^a)     were tried.    Good convergence has 

been obtained with blocks as small as 0. 07 lattice constants on each side.    Fox 

much smaller blocks P(r)    does not converge well and would approach the 

P (r) given by (3 -3) if the cube became    small enough.    If the block is large, 

the moment in the region of the atom is smeared out over the entire cell.    For 

intermediate sizes of 6/a the Fourier series forp (r) converges to a negative 
o 3 

density of 0. 0085 Hß / A    uniformly over the entire unit cell outsi      of the 
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region near the atoias.    p  (r) is plotted in Fig.   15 for the direction along the 

[100] axis.    Note that the moment density hump near the origin is spread out more 

than in Fig.  13,  and the value of the moment density at the atomic site is there- 

fore  decreased.    The P (r)  in other directions in the crystal is similar to P(r) 

along [100], the part  of the density in the 3d hump being slightly different in 

different directions due to the high t,    symmetry. 

The magnetic moment density in the [100] and [110] planes is shown 

on the contour mapp,  Figs.  16 and 17.    These maps again emphasize the strong 

asymmetry in the magnetic moment distribution.    The moment density extends 

out along the [ill] body diagonal direction showing the effect of the ty    symmetry 

of the 3d magnetic electrons.    The part of the moment density near the atomic 

sites in the 3d magnetic moment humps was given by the series for P(r).    The 

series for P(r) was employed to give the moment density far from the lattice 

points.     The Fourier maps show that the magnetic moment density consists of 

large positive humps near the atomic sites imposed on a small constant negative 
o 3 

background of about 0. 0085 Hg/A   .    This is in very good agreement with the 

model of the magnetization obtained in Section B.    This model required that 

o /O 3 
at 0 K a negative moment density of 0. 0096 H-o/A     be spread uniformly over 

the unit cell.    At room temperature,  the constant negative contribution would 

/0 3 

be about 0. 0091 ^o/A       which agrees closely with that seen in the moment 

density maps. 

It is worthwhile to emphasize that the Fourier inversion technique 

requires no theoretical model of the magnetic moment distribution,  and gives 

the spatial    distribution of the magnetic moment density directly from the 

measured datcu 
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Fig. 16    Magnetic   Moment   Distribution  in the   [100] Plane 
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•< D.  Summary 

The magnetic form factor of nickel has been determined for the first 
o_i 

27 reflections,  which corresponds to a sin 6     value of 1.16 A   .    The mag- 

netic form factor contains information-about the spatial distribution of the 

magnetic moment density in the unit cell.    There aie two approaches one can 

take in obtaining this information.    The first is to compare the measured form 

factor with calculated form factors.    Unfortunately, there are no calculated 

form factors available for nickel metal, but a number of free atom form factors 

are available for several stages of ionization.    It is surprising to find that the 

free atom form factor for Ni    fits the data extremely well,provided a uniform 

negative contribution is added to the moment density.    We are unable to determine 

ttie origin of the negative contribution but feel that negatively polarized 4s elec- 

tj ons, or spir. polarization effects in the 3d band, could be responsible.    The 

form factor is not a smooth function of  r— , and from the comparison with 

the free atom form factor we find that 81+1 /o of the 3d electrons occupy t? 

orbitals regardless of the origin of the negative contribution to the magnetization. 

The second approach in analyzing the data is to Fourier-transform the 

form factor to obtain a three-dimensional map of the moment distribution.    The 

Fourier series gives accurate information about the shape of the moment density 

near the lattice points, but converges too slowly to give any information in the 

region between the atoms where the moment density is small.    A Fourier series 

was devised that gives the density averaged in space over a cubic block.    This 

series smears out the   moment distribution somewhat but converges quickly 

giving accurate information in the region where the moment density is small. 

A map of the moment density derived from these Fourier series shows the t2 

M. 
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symmetry clearly and pictures the moment distribution as being similar to asym- 

metric free atom distributions placed on a uniform negative background.     The two 

approaches to analyzing the data give very similar results for the size of the 

negative background and appear to be consistent with each other in every way. 

/ 
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APPENDIX A 

INSTRUMENT/«L CORRECTIONS 

For the half wavelength correction we must know   -=—'— I 6 L .    Moon 
I 

[11] measured this ratio for the S-4 spectrometer by determining the inte- 

grated intensity for the same reflection from the same crystal for both 

wavelength components.    This measurement had to be corrected for the 

difference in crystal reflectivity and absorption for the two wavelengths to 

obtain the incident beam intensity ratio from the reflected intensity ratio. 

The measurement was checked by inserting a Pu filter in the beam which 

at 1. 05A     removes practically all the X/2 component.     Previous values 

obtained in the laboratory for the ratio of I»/? to I\ were ~=—'    =0. Oil. 
K, 

This number does not have to be known accurately as the x/2 correction 

to the data is very small in ail cases. 

The polarization is determined by asing an analyzing crystal simi- 
« 

lar to the polarizing crystal and measuring the flipping ratio.    The polari- 

zation is not uniform over the entire beam and in particular it» lower in the 

upper and lower edges of the beam compared to the middle.    The form 

factor measurements were all made using just *he middle section of the 

beam over ./hich the polarization is quite uniform.    With the analyzing crys 

tal in the beam,  the flipping ratio is given by 

+ PP  ,SIA  hlL 

L 

R    = a   0      ^           gX a 

1-P P  (2f-l)  + -±£ -^ 
0  a                 ^      gX 

(A-r 

making use of equation (2-9) and letting 

A-l 

asagt; • [ 
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+ _ 
o a       ^a 
p

a 
=-+■"-;     T- (A-2) 

where g      and g      are the reflectivities of the analyzing crystal.  P    is the 

beam polarization at the test crystal position and can be thought of as being 

the product of P  ,  the polarizing efficiency of the polarizer,  and P,   which 

represents the beam depolarization along the path between the polarizing and 

analyzing crystals.    The half wavelength terms require a knowledge of 

g\/2/g   which can be calculated using the form factor data for 

Co    2 Fe  QQ 
of Nathans and Paoletti [41]. 

The shim ratio is given by 

S=l + P P (A-3) 
o   a 

This ratio S is defined as the ratio of the reflected intensity from a polarized 

beam to the reflected intensity for the same beam completely depolarize !. 

The beam is depolarized by inserting a cteel shim in the beam.    Moon found 

for the S-4 spectrometer S=l. 997 + . 004 and R  =97+1.    Using ( A-l ) and 

(A-3) this gives (l-2f)=0. 98b +   004.    The nickel measurements were taken 

using a different magnet and for this magnet R  =84 + 2.    It is reasonable 

to assume that this smaller value of R    was caused by a decrease in P 
a 7 o 

rather than in (l-2f) so we can let (l-2f)=0. 985+. 004 in our case also. 

The analyzing crystal is in a larger magnet than the polarizing 

crystal so it is expected that P   > P   if the two crystals are cut from the a -    p 

same ingot. Flipping ratios as high as 2G0 have been measured with the 

analyzing crystal on the S-3 spectrometer. In thiö case, even if P and 

(l-2f) are taken to be 1 this give P = 0. 995,  so it is a very good assump- 
' ci 

to set P =1 in our calculations.    Using R  =84 we then obtain P =0. 992, 
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which is the value that was used for making the depolarization corrections. 

The above values for P  ,  {l-2f) and P    are the most reasonable 
o' a 

ones considering the experimental information available.    It is found,  how- 

ever, that P  ,   (l-2f) and P    are very restricted if a  flipping ratio of 84 is 

obtained with the analyzing crystal.    Within the restriction R  =84 and 

P >P    any assignment of values for P  ,  (l-2f) and P    give the same polar- 

ization correction to the data within the experimental error. 

Some of the higher reflections were measured at a wavelength of 
o 

0. 77 A .    The flipping ratio for the analyzing crystal in this case was 42. 

The polarization corrections at this wavelength were made using 

{l-2f) = 0. 985, P =1,  and P    - 0. 968.    The data are very insensitive to 

the assignment of these values since only reflections with R very close 
o 

to 1 were measured at 0. 77 A. 
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APPENDIX B 

CRYSTALS 

The nickal crystals were grown at the neutron diffraction laboratory 

by the Briugman method.    The melt was contained in a pointed alumina cruci- 

ble and heated by means of a 2   1/2 kW high frequency generator.    Once the 

crucible was correctly aligned the vacu"m system containing the crucible 

was evacuated to a pressure of 10      mm/Hg and outgassed for several hours, 

When the outgassing was complete one half of an atmosphere of helium was 

let into the crucible through a molecular sieve.    Ine molecular sieve served 

to remove impurities such as oxygen from the helium gas.    The crystals were 

grown over a period of about 12 hours in the helium atmosphere.    Various 

growing rates and temperatures were tried in order to get crystals with a 

uniform mosaic spread throughout the crystal volume.     The nickel used was 

supplied by the Johnson Matthey and Co.   in rod form.    The largest impurity 

present was iron which was present to the order of 5 parts per million. 

Smaller amounts of other impurities were present but the nickel was suffi- 

ciently pure so that no corrections were needed to be made to form factor 

data due to the presence of impurities. 

The crystals were oriented roughly by X-rays and then more 

precisely by neutrons.    The entire experiment was doen with two crystal in- 

gots,  one oriented to give sample slices porpendicular to the (110) direction, 

the other orientated to give (100) slices.    The crystal ingots were cut into 

slices 0.050 inche    thick with an alundum wheel.    These slices were then 

polished to the thickness desired by using various abrasive papers and diamond 

paste.    Crystal slices as thin as 0. 001 inch and uniform in thickness to 0. 0001 

inch could be obtained.    By means of a series of etchings and X-ray measure- 

ments,  the crystal slices prepared in this manner were found to have a fairly 

B-l 
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uniform mosa.j spread throughout thsir thickness.    Crystal slices less than 

0. 005 inch      thick tended to bend slightly after polishing^ producing a wide 

mosaic width.    The wide mosaic width in the thin slices was useful in re- 

ducing secondary extinction. 



APPENDIX C 

SAMPLE DEPOLARIZATION 

In order to determine the depolarization of a crystal slice tilted 

in a magnetic field,the direction of the magnetization inside the sample 

must first be obtained. 

easy axis 

n  x 

^K^       sample slice 

Fig.   18 

Coordinate System  for Depolarization Calculations 

Let H be the field outside of the sample and H jbe the field inside the sample. 

Let N    and N   be the sample demagnetizing factors.    Then 
x y 

H.    = H -477 N M 
IX X XX 

H      = H   - 477 N M „ 
iy      y y   y 

M    ^ M sin  (ö-(|>) 

M    = M cos (Ö-4) 
y 

The total magnetic energy can than be written letting (ö-<j>) -p 

(C-l) 

(C-2) 

c-i 

MM 
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22        2    2        22 III 
E    = C +K1{a1   a,   + a7  a,    +a, a    )+KAa,   a      or    ) + 

m klv"l   "2   x "2  "3    x"3    I  /T"2V  1     2    "3 

MH cos 4-4^ N M2sin2ß-47r N M2cos2ß tC-3) T x r y 

where the al are the direction cosines between the easy axis and the external 

field direction. For nickel,  Kp-35000 -^^     K2= 4')000   e-^f-     and 
cm ' cm 

e r es r 
M=485  a =•   [42, 32],    The experiment was done in a field strength 

gauss cm 

i " H= 7. 2 koe.    The magnetic field energy terms are almost two orders of 

magnitude larger than the anisotropy energy terms and it is a very good 

approximation to neglect anisotropy altogether. 

9E We want to minimize the energy with respect to 9 sc we set -v-r- 

equal to zero giving 

cos B sin ß    _ H  (C-4) 
ein <j> "    871 (N -N ) 

y 
The demagnetizing factors N   and N   are given by Osborne [43  ] if the 

x y 

sample shape is approximated by an ellipsoid.    For any major to minor 

axis ratio on the order of our sample size N = 1,  N -0.    Given an angle 

6 equation (C'4) can be solved graphically for the angle 4 which gives the 

direction of Minside the sample.    The polarization direction is along B 

and once M is found B  is given by equation (2-36), 

Now consider the depolarization resulting r:m neutrons origi- 

nally polarized in the dir  ction of Htraversing a sa nple slice in which 

the direction of the B  inside is different than   the externally applied H. 

Halpern and Holstein [28] show that this problem may be treated classically. 

The change in spin axis of a neutron passing through a magnetic region is 

given by the classical equation of motion 

■^- -    •JV~ v. ^Ktefesg^J 
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dT^gSxB (C-5) 

where   S is the operator for thr neutron spin and g is the gyroxnagnetic 

ratio of the neutron.    This equation is linear in the spin operator so the 

spin operator can be replaced by its expectation value.    If the neutron passes 

through a region i  with field B., equation (C-5) shows that the change in 

the spin is such that the component parallel to B . is unchanged and the com- 

ponent perpendicular to Bj precessea about R with angular velocity 

w . = g B . .    We can thus write 

3.= A. 1 -I (C-6) 

where A. is the dyadic 

R B B   B ■— 

A.= ^—yi-  + (1+   -i-ji > co? w. t - (sin u.t)    :
Bix 

1      B. Bi ' Bi 

Since the initial polarization is very good,the initial spin may be written 
^ /v — 

S    = A where k is a unit vector in the direction of H .    We will choose a 
o 

coordinate system so that j is along the axis of tilt of the sample and x, 

y, and z are measured along tie coordinate axes so defined. Inside the 

sample which we will call region 1 the spin is given by 

S, = 
1  Ü   .-5   kB   , A 

  [ 1-cos u.t] cos Y+ k cos tat 
1        Bi 

+ j sin w-t sin y (C-7) 

where t is the time the spin is observed measured from the time the neu- 

tron entered the sample, and   V is the tipping angle of magnetic field in the 

slice.    The polarization at the posit'or where the neutron leaves the slice 

is given by setting t equal to the neutron transit time T in the slice.    The 

— ,  _ ■ ■ 
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neutron spin after leaving the slice   S,   is found by ap» lying (C-6) again giving 

S£   = [(I-COSWJT) cos2 7 + cos WjT] k {C-8) 

where we have i veraged over time to get the quantity of interest for the ex- 

periment.    The final neutron polarization   P-,   can be obtained directly from 

(C-8) and the flipping ratio is given by the expression 

l + 2p/bP   PT+ (p/b)2 

R   =    2_i -— (C-9) 
l-2VbP0PfPT+(p/b)'i 

wh^re   P     is the initial polarization,    P,  the flipper polar"ziition and   p/b   is 

known for the analyzing crystal.    The flipping ratio determined from this 

expression is compared with an experimentally measured flipping ratio in 

Fig.  7. 



APPENDIX D 

THE SUMMARY OF EXPERIMENTAL DATA 

A summary of the experimental data is given in Table III.    All 

errors are given in standard deviations.    The statistical uncertainty in 

the measured flipping ratio,  R    ,  was determined by two methods.    The 

standard deviation was computed from the total number of neutrons counted 

assuming a normal distribution of counting intensity.    This was compared 

to the standard deviation obtained directly  .rom the data by computing the 

deviation from the mean for each counting interval.    In all cases,  the 

two determinations of the standard deviation agreed very closely.    If the 

standard deviation computed directly from the data is noticeably larger than 

that determined from the total number of counts,  it is an indication that 

noise or other non-random effects may be entering the electronic counting 

apparatus and the data should be suspect. 

The background counting rate also enters into the statistical error. 

For very low counting rates the background uncertainty may give a large 

contribution to the total error.    The background was measured on both sides 

of the Bragg peak in all cases,  and for low intensity runs was measured at 

several positions on each side of the Bragg peak both before and after the 

flipping ratio measurement was made. 

The measured flipping ratio R     was corrected for instrumental errors 

using the methods discussed in Chapter II,  Section A.    The corrected flipping 

ratio    R     ,    was then converted to p/b and corrected for extinction effects, ext r/ 

The error in p/b includes the uncertainties in the size of the corrections applied 

to the data.    Finally,  the p/b from the measurements made at each reflection 

were averaged to obtain p/b avg.    A larger number of measurements were 

D-l 
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made than are shown in Table III.    Some of the measurements bad to be dis- 

carded because of high extinction or other uncertainties and only the runs 

that were used tv. obtain the final average p/b avg are included in Table III. 
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